63 research outputs found

    Anticipatory Postural Adjustments During Lateral Step Motion in Patients With Hip Osteoarthritis

    Get PDF
    Patients with hip osteoarthritis (OA) have difficulty with mediolateral postural control. Since the symptom of hip OA includes joint pain, which mostly occurs upon initial movement, patients with hip OA might have disabling problems with movement initiation. This study aimed to identify the movement strategy during the anticipatory postural adjustments in the lateral step motion in patients with hip OA. We studied 18 female subjects with unilateral hip OA and 10 healthy subjects, and measured temporal, kinetic, and kinematic variables. Patients with hip OA required a longer duration of anticipation phase than the control subjects, the total duration of lateral stepping was not different between the groups. Displacement of the center of mass to the supporting (affected) side during the anticipation phase was not different between the two groups. These findings suggest that, in patients with hip OA, the center of mass slowly moved to the affected side. Furthermore, patients with hip OA showed greater shift of the trunk to the supporting side than did the control subjects. These movement characteristics might contribute to the achievement of both protection of the affected hip joint and quickness in the subsequent lateral step in patients with hip OA

    Influence of simulated hip muscle weakness on hip joint forces during deep squatting

    Get PDF
    This study aimed to determine the effects of simulated hip muscle weakness on changes in hip joint forces during deep squat motion. Ten healthy individuals performed squat motion at three different positions (0 degrees foot angle [N-squat], 10 degrees toe-in [IN-squat], and 30 degrees toe-out [OUT-squat]). A scaled musculoskeletal model for each participant was used to calculate the muscle and hip joint forces. For each hip muscle, models of full strength, mild muscle weakness (15% decrease), and severe muscle weakness (30% decrease) were created. The muscles affecting the hip joint forces were identified, and the rate of change in the joint forces was compared among the three squat conditions. The anterior hip joint force was increased in the muscle weakness models of the inferior gluteus maximus (iGlutMax) and iGlutMax+deep external rotator (ExtRot) muscles. With 30% muscle weakness of these muscles, statistically significant differences in the rate of increase in the anterior joint force were observed in the following order: IN-squat (iGlutMax, 29.5%; iGlutMax+ExtRot, 41.4%), N-squat (iGlutMax, 18.3%; iGlutMax+ExtRot, 27.8%), and OUT-squat (iGlutMax, 5.6%; iGlutMax+ExtRot, 9.3%). OUT-squat may be recommended to minimize the increase in hip joint forces if accompanied by hip muscle weakness

    Verification of criterion-related validity of the evaluation method of postural stability using the frame subtraction method.

    Get PDF
    It is important to quantify the postural stability. The frame subtraction method can calculate the motions of a subject, and might be easier to implement, with lower costs. However, validity of the evaluation of postural stability using this method have not been validated yet. Therefore, the purpose of this study was to verify criterion-related validity of the frame subtraction scores and the center of pressure (COP) parameters during maintenance of single leg standing. Twenty two healthy young subjects participated in this study. Motion tasks comprised right leg standing with eyes open and closed. The total length of COP displacements (LNG), Root mean square (RMS) area, anterior - posterior (AP) range, medial - lateral (ML) range were recorded using the force plate. Simultaneously, the motion images were acquired with digital video cameras from the front and right sides. After the motion images were analyzed using the frame subtraction method, the frame subtraction scores (maximumsum of the frame subtraction score on each planethe frontal and sagittal planes) were measured. To confirm the validity, Spearman's rank correlation coefficient between the frame subtraction scores and the COP parameters was calculated. The sum of the frame subtraction score on the frontal plane was significantly correlated with all COP displacements in the single leg standing. The result of this study indicated that the frame subtraction method could be applied to the evaluation of balance task with postural sway such as maintenance of single leg standing. The frame subtraction method is low cost and easy owing to its marker-less systems

    Effects of the trunk position on muscle stiffness that reflects elongation of the lumbar erector spinae and multifidus muscles: an ultrasonic shear wave elastography study.

    Get PDF
    PURPOSE: The present study aimed to clarify the effects of the trunk position on muscle stiffness that reflects elongation of the lumbar erector spinae and lumbar multifidus muscles using ultrasonic shear wave elastography (SWE). METHODS: The study included ten healthy men. The shear elastic modulus of the left lumbar erector spinae and lumbar multifidus muscles were evaluated using ultrasonic SWE. Measurement postures for the left lumbar erector spinae muscle were (1) prone position (Rest), (2) sitting position with the trunk flexed (Flexion), (3) the Flexion position adding right trunk lateral flexion (Flexion-Lateral Flexion), and (4) the Flexion position adding right trunk rotation (Flexion-Rotation 1). The left lumbar multifidus muscle were measured in positions (1)-(3), and (5) the Flexion position adding left trunk rotation (Flexion-Rotation 2). RESULTS: The shear elastic modulus of the lumbar erector spinae muscle in the Flexion-Lateral Flexion position was significantly higher than that in the Rest, Flexion, or Flexion-Rotation 1 positions. Shear elastic modulus of the lumbar multifidus muscle was similar in the Flexion, Flexion-Lateral Flexion, and Flexion-Rotation 2 positions, but significantly lower in the Rest position. CONCLUSIONS: The results of the present study suggest that the lumbar erector spinae muscle is stretched effectively in the position adding trunk contralateral lateral flexion to flexion. The results also indicate that the lumbar multifidus muscle, which does not appear to be affected by adding trunk contralateral lateral flexion or ipsilateral rotation to flexion, is stretched effectively in the trunk flexion position

    The relation between limb segment coordination during walking and fall history in community-dwelling older adults

    Get PDF
    Control of the swing foot during walking is important to prevent falls. The trajectories of the swing foot are adjusted by coordination of the lower limbs, which is evaluated with uncontrolled manifold (UCM) analysis. A previous study that applied this analysis to walking revealed that older adults with fall history had compensatorily great segment coordination to stabilize the swing foot during normal walking. However, it is unknown whether the increase in segment coordination helps for preventing incident falls in the future. At baseline measurement, 30 older adults walked for 20 times at a comfortable speed. UCM analysis was performed to evaluate how the segment configuration in the lower limbs contributes to the swing foot stability. One year after the baseline visit, we asked the subjects if there were incident falls through a questionnaire. The univariate and multivariable logistic regression analyses were performed to assess the association between the index of segment coordination and incident falls with and without adjustment for gait velocity. Twenty-eight older adults who responded to the questionnaire were classified into older adults (n = 12) who had the incident fall and those (n = 16) who did not have falls. It was revealed that older adults who increased the segment coordination associated with swing foot stability tended to experience at least one fall within one year of measurement. The index of the UCM analysis can be a sensitive predictor of incident falls

    Gait- and Posture-Related Factors Associated With Changes in Hip Pain and Physical Function in Patients With Secondary Hip Osteoarthritis: A Prospective Cohort Study

    Get PDF
    Objective: To identify gait- and posture-related factors associated with changes in hip pain and physical function in patients with hip osteoarthritis (OA). Design: Prospective cohort study. Setting: Clinical biomechanics laboratory of a university. Participants: Consecutive sampling of female patients with mild-to-moderate secondary hip OA (N=30). Main Outocome Measures: Hip pain (visual analog scale) and physical function (physical component summary of the Medical Outcomes Study 36-Item Short-Form Health Survey) were measured at baseline and 12 months later. With changes in hip pain and physical function as dependent variables, linear regression analyses were performed with gait- and posture-related factors as independent variables with and without adjustment for age, joint space width, and hip pain or physical function at baseline. Posture-related factors included angles of thoracic kyphosis, lumbar lordosis, sacral inclination, spinal inclination, and spinal mobility. Gait-related factors were walking speed, steps per day, joint angles, external hip joint moment impulses, and daily cumulative hip moments. Results: Multiple linear regression analyses showed that limited hip extension (adjusted standardized B coefficient [95% confidence interval]: −0.52 [−0.88 to −0.17]) and limited external rotation angles (−0.51 [−0.85 to −0.18]) during walking were associated with the worsening of hip pain. An increased thoracic kyphosis (−0.54 [−0.99 to −0.09]), less sacral anterior tilt (0.40 [0.01-0.79]), reduced thoracic spine mobility (0.59 [0.23-0.94]), less steps per day (0.53 [0.13-0.92]), and a slower walking speed (0.45 [0.04-0.86]) were associated with deterioration in physical function. Conclusions: Gait- and posture-related factors should be considered when assessing risk and designing preventive interventions for the clinical progression of secondary hip OA

    Back muscle activity and sagittal spinal alignment during quadruped upper and lower extremity lift in young men with low back pain history

    Get PDF
    [Background]Quadruped upper and lower extremity lift (QULEL) is performed for selective training of the lumbar multifidus muscle in patients with low back pain (LBP) or individuals with LBP history (LBPH). However, the activities of the back muscles and sagittal spinal alignment during QULEL are not clarified in individuals with LBPH.[Research question]This study aimed to analyze the activities of the back muscles and sagittal spinal alignment during QULEL in young male with LBPH.[Methods]The study comprised 9 asymptomatic young men and 8 young men with LBPH. The activities of the lumbar multifidus, latissimus dorsi and thoracic erector spinae, and lumbar erector spinae muscles were measured using surface electromyography. The flexion angles of the upper and lower thoracic spine, and extension angle of the lumbar spine were measured using a 6-DF electromagnetic motion tracking system. The association with LBPH was investigated using multiple logistic regression analysis with a forward selection method, with the activities of the back muscles, sagittal spinal alignment, age, body height, and body weight as independent variables.[Results]Multiple logistic regression analysis (p = 0.0002) showed that the activity of the latissimus dorsi and thoracic erector spinae muscles in the side on which the lower extremity was lifted and body height were significant and independent determinants of LBPH, but other factors were not.[Significance]The results of this study suggest that the activity of the latissimus dorsi and thoracic erector spinae muscles increases while there are no decrease in activity of the lumbar multifidus muscle and excessive extension of the lumbar spine during QULEL in young men with LBPH

    Strategies for increasing gait speed in patients with hip osteoarthritis: their clinical significance and effects on hip loading

    Get PDF
    BACKGROUND: Changes in gait speed are required in various situations and can be achieved by changing stride length, cadence, or both. Differences in strategies for increasing gait speed may have different effects on hip joint and physical function. The purpose of this study was to determine the effects of strategies for increasing gait speed on hip pain, physical function, and changes in hip loading during gait in patients with hip osteoarthritis (OA). We hypothesized that patients who increase gait speed mainly by increasing cadence would have lesser hip pain, a higher physical function, and a lower rate of increase in hip moments with increasing gait speed. METHODS: Forty-seven patients with secondary hip OA (age, 48.3 ± 11.0 years) were included. Gait speed, stride length, cadence, and peak and impulse of the hip moments were measured during gait at self-selected normal and fast gait speeds. The patients were classified as types S (with mainly increasing stride length, n = 11 [23.4%]), C (with mainly increasing cadence, n = 23 [48.9%]), and SC (with increasing stride length and cadence, n = 13 [27.7%]) according to whether they used changes in stride length and/or cadence to transition from normal to fast gait. Hip pain, physical function, and hip moment changes during gait were compared between types. RESULTS: The physical function was higher in types C (38.0 ± 8.8, P = 0.018) and SC (40.6 ± 8.5, P = 0.015) than in type S (28.2 ± 7.8), even after adjustment for age and minimum joint space width. Hip pain was not significantly different between types. The robustness of these results was confirmed with sensitivity analysis. The rates of increases in peak external hip adduction (P = 0.003) and internal rotation moments (P = 0.009) were lower in type C than in type SC. CONCLUSIONS: Type C tended to suppress the increase in hip moments during fast gait. Types C and SC, which included increased cadence, maintained higher physical function levels than type S. Encouraging the use of cadence-increasing strategy may be useful for reducing hip loading and maintaining physical function in patients with hip OA

    Effects of trunk lean and foot lift exercises in sitting position on abdominal muscle activity and the contribution rate of transversus abdominis

    Get PDF
    Purpose: Abdominal hollowing exercise has been recommended to improve trunk stability. Trunk lean and foot lift exercises while sitting may easily promote abdominal muscle activity even in people who cannot perform abdominal hollowing consciously. The purpose of the present study was to examine the changes in abdominal muscle activity and contribution rate of the transversus abdominis muscle (TrA) when leaning the trunk and lifting the foot during sitting. Methods: The muscle stiffnesses (indicators of muscle activity) of the right rectus abdominis, external oblique, internal oblique, and TrA of 14 healthy men were measured during abdominal hollowing and the following nine sitting tasks: reference posture, 15° and maximal posterior trunk lean, 20° and maximal ipsilateral and contralateral trunk lean, and ipsilateral and contralateral foot lift. The TrA contribution rate was calculated by dividing the TrA stiffness by the sum of the abdominal muscles’ stiffnesses. Results: The TrA stiffness was significantly higher in abdominal hollowing than in reference posture, posterior and ipsilateral trunk lean, and ipsilateral foot lift, but not higher than in contralateral trunk lean and contralateral foot lift. There was no significant difference in the TrA contribution rates between abdominal hollowing and ipsilateral or contralateral foot lift. Conclusion: The contralateral trunk lean or contralateral foot lift could enhance TrA activity for people who cannot perform abdominal hollowing consciously. The contralateral foot lift could particularly be beneficial to obtain selective activity of TrA

    Abdominal girth as an index of muscle tension during abdominal hollowing: Selecting the optimal training intensity for the transversus abdominis muscle

    Get PDF
    The abdominal hollowing technique is used for training the transversus abdominis (TrA). However, the optimal intensity of hollowing is still unclear. The objective of the present study is to verify the validity of estimating the tension of the TrA by measuring the girth of the abdomen with a tape and to determine the optimum intensity of hollowing to effectively train the TrA. Sixteen healthy males performed hollowing with an intensity of 0%, 25%, 50%, 75%, and 100%, estimated from the girth of the abdomen. The shear elastic modulus was measured for the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and TrA at all intensities via ultrasonic shear wave elastography. The shear elastic modulus was considered as the index of the tension of the abdominal muscles at each intensity, and the ratio of the TrA to RA, EO, and IO respectively was calculated as the index of TrA selectivity. As the intensity of hollowing increased, the girth of abdomen decreased and tension of all the four muscles increased. The ratio of TrA to the RA, EO, and IO did not exhibit a significant variation among hollowing intensities of 25% to 100%. It is rational to estimate the tension of the TrA by measuring the girth of the abdomen. Moreover, considering both TrA contraction intensity and selectivity, abdominal hollowing performed at maximum intensity was effective for the maximum contraction training of the TrA
    corecore